Computational Geometry with Applications

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

Meshing

- Important preprocessing step for many applications
- "Domain discretization" = a complex region (domain) in 2D or 3D is partitioned into a set of much simpler polytopes , e.g., tetrahedra or hexahedra
- Applications:
- $\mathrm{FEM}=$ Finite Element Method (a.k.a. FEA)
- CFD = Computational Fluid Dynamics

- Simulation involves solving differential equations for „every" point inside the domain -> solve only on the nodes

Uniform
mesh, i.e. too many mesh elements.

Non-uniform, conforming mesh that respects the input; well-shaped, too: bounded aspect ratio (e.g., angles \in [$45^{\circ}, 90^{\circ}$].
But needs so-called "Steiner points" (additional points) \rightarrow where/how to place them?

Non-uniform, conforming mesh that respects the input. But acute triangles.

Mesh with all desired properties, based on quadtree.
(U) Example Result of Our Meshing Algorithm

※ Example "snappyHexMesh"

(巴) Other Kinds of Volume Meshes

- Is it possible to triangulate a cube without additional points (Steiner points)?
- Different triangulations \rightarrow different number of tetrahedra:

- An untriangulable ("untetrahedralizable") polyhedron:

Schönhardt Polyhedron (1928)

Generalization of
Schönhardt by Rambau

Chazelle Polyhedron (1984)

Thurston Polyhedron (1977)

Jessen's Ikosahedron

Point Quadtree Demo

Quadtree Demo

Recursion criterion here: more than 4 points in a node

Variant: Exact Octrees (a.k.a. SP-Octrees)

Boundary leaf nodes
Other leaf nodes are black or white

Start with icosahedron; subdivide each triangle by 4 smaller triangles (recursively) \rightarrow quadtree in each base triangle.

Navigation (finding neighbors of a node) in such an ensemble of quadtrees is a bit more complex

Space-Filling Curves

- Definition curve: A curve (with endpoints) is a continuous function with domain in the unit interval $[0,1]$ and range in some d-dimensional space.
- Definition space-filling curve: A space-filling curve is a curve with a range that covers the entire 2dimensional unit square (or, more generally, an n-dimensional hypercube).

Examples of Space-Filling Curves

Hilbert curve

Z-order curve in 3D

- Benefit: a space-filling curve gives a mapping from the unit square to the unit interval
- At least, the limit curve does that ...

- We can construct a "space-filling" curve only up to some specific (recursion) level, i.e., in practice space-filling curves are never really space-filling

Construction of the Z-Order Curve (here, in 3D)

1. Choose a level k
2. Construct a regular lattice of points in the unit cube, 2^{k} points along each dimension
3. Represent the coordinates of a lattice point p by integer/binary number, i.e., k bits for each coordinate, e.g. $p_{x}=b_{x, k} \ldots b_{x, 1}$
4. Define the Morton code of p as the interleaved bits of the coordinates, i.e., $m(p)=b_{z, k} b_{y, k} b_{x, k} \ldots b_{z, 1} b_{y, 1} b_{x, 1}$
5. Connect the points in the order of their Morton codes \rightarrow z-order curve at level k

』 Example

Note: the Z-curve induces a grid (actually, a complete quadtree)

Properties of Morton Codes (here, in 2D)

- The Morton code of each point is $2 k$ bits long
- All points p with Morton code $m(p)=0 x x x$ lie below the plane $y=0.5$
- All points with $m(p)=11 x x$ lie in the upper right quadrant of the square
- If we build a quadtree/octree on top of the grid, then the Morton code encodes the path of a point, from the root to the leaf that contains the point ("0" = left, " 17 = right)
- The Morton codes of two points differ for the first time - when read from left to right -
 at bit position $h \Leftrightarrow$ the paths in the binary tree over the grid split at level h

Logic Operations with Quadtrees

http://blog.ivank.net/quadtree-visualization.html

http://www.mikechambers.com/blog/2011/03/21/javascript-quadtree-implementation/

Octree Models from Images

』 Example Models

巴 Image Compression using Quadtrees

The two test images par excellence

JPEG: 1.00 bits per pixel

Computational Geometry

QP: 1.95 bits per pixel

JPEG: 1.99 bits per pixel

SS July 2023

Demo for BTC and CCC Compression

http:///s.wim.uni-mannheim.de/de/pi4/teaching/animations/

巴 S3TC Texture Compression

- Comparison:

- Advantage: bigger textures possible \rightarrow higher quality
- Example from the Unreal Engine:

uncompressed

with S3TC

Unreal Retexturing Project

Isosurfaces

- Beispiel zur Motivation:
- Gegeben ist ein 2D Höhenfeld
- Gesucht ist eine Visualisierung (in 2D!), so daß man die Form / den Verlauf des Höhenfeldes gut "erkennt"

- Eine Möglichkeit: Höhenlinien = Konturen = Isolinien

(※) Computational vs Physical Space

How Many Triangulations has the Hexahedron?

(= Tetrahedralizations)

- Cube $\rightarrow 2$ triangulations
- Hexahedron:
- Triangulation must conform to border of hexahedron
- 12 edges are fixed, 8 edges have 2 possibilities $\rightarrow 26$ possibilities to triangulate the surface of a hexahedron
- Each of these could lead to a number of different triangulation of the hexahedron

- Question: how many are there combinatorially? do all have a geometric

巴 Video

The PuzzLE

Problems / Challenges With Isosurface Computation

- Singularities \rightarrow isosurface contracts to a point, or appears "out of nowhere" when isovalue crosses that point
- Ambiguities during tesselation
- Plateaus \rightarrow large "jumps" of the location of the isosurface when isovalue changes by ε

巴ひ Examples for volume data records

Chapel Hill CT Head

Blunt Fin

[^0]Isosurface of the
Richtmyer-Meshkov Instability
(Lawrence-Livermore National Labs (LLNL))

The 15 really different cases in 3D Marching Cubes (modulo rotation \& mirroring) ${ }^{c / 4}$

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html

Difficult Cases for Every Isosurface Algorithm

- An ambiguous case in 2D:

- Sometimes, triangulations of adjacent voxels won't match:
- More on that \rightarrow Advanced Computer Graphics

8 -sided polygon

9-sided polygon

12-sided polygon

- Output of a single Marching-Cube-Algorithm:

Example time-varying volume data set

Another Demo (Metaballs)

http://threejs.org/

Splitting strategies when building kd-Trees

Widest spread kd-tree

Along the dimension
with the widest spread of the points, at the median of the coords

Longest side kd-tree

Along the dimension with the longest side of the region, at the coordinate closest to the middle of the extent of the region

Animation of Nearest-Neighbor using kd-Trees

(⿺辶) Animation of NN search with large data set

Good case

Bad case

All leaves the NN algorithm had to visit are shown in white!
In a few moments, it will get worse ...

ひ Artistic Application of k-NN Algorithm

Application: Classification

- Given a set of points $\mathcal{L}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{d}$ and for each such point a label $y_{i} \in\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$
- Each label represents a class, all points with the same label are in the same class
- Wanted: a method to decide for a not-yet-seen point x which label it most probably has, i.e., a method to predict class labels
- We say that we learn a classifier C from the training set \mathcal{L} :

$$
C: \mathbb{R}^{d} \rightarrow\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}
$$

- Typical applications:
- Computer vision (object recognition, ...)
- Credit approval
- Medical diagnosis
(巴) One Possible Solution: Linear Regression
- Assume we have only two classes (e.g., "blue" and "yellow")
- Fit a plane through the data

(⿺辶) Another Solution: Nearest Neighbor (NN) Classification
- For the query point q , find the nearest neighbor $\mathbf{x}^{*} \in\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{d}$
- Assign the class l^{*} to x

Improvement: k-NN Classification

- Instead of the 1 nearest neighbor, find the k nearest neighbors of $\mathrm{q},\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}\right\} \subset \mathcal{L}$
- Assign the majority of the labels $\left\{l_{i_{1}}, \ldots, l_{i_{k}}\right\}$ to q

Thinking About Higher-Dimensional Space: Slicing

(巴) 4-Dimensional Space

- Brain teaser: what does a cube that slowly "floats" through Flatland look like, starting with a corner?
- What can a higher-dimensional being do with lower-dimensional beings:

Thinking About 4D: Analogy and Slicing, Example: 4-Dim. Tetrahedron

Thinking About 4D: the Projection Method, Example Hypercube (Tesseract)

Thinking About 4D: the Unwrapping Method

The unfolding method:
The projection of a 3D cube unfolding into its 2D net

Matt Parker
 (Corpus Hypercubus),
1954, Salvador Dali

Projection of a 3D cube unfolding into its 2D net

Projection of a 4D cube unfolding into its 3D net

The "lid" of the 4D cube (what is it?) does not deform, of course; that is just an artefact of the projection into 3D, just like the lid of the 3D cube when projected into 2D.

Strange Things Happen in Higher-Dimensional Space

- Consider a cube $[-1,+1]^{d}$ with unit spheres centered at each corner
- What is the radius, r, of a sphere centered at the origin and just touching the corner spheres?

- Radius $r=\sqrt{d}-1$
- In 2D: $r=0.414$, in 3D: $r=0.73$
- In 4D: $r=1 \rightarrow$ inner sphere touches box at the face centers!

- In 5D: $r=1.24 \rightarrow$ inner spheres sticks outside!
- In higher dimensions, more and more of the inner sphere is outside the box:

Zum Verhalten von $\log ^{d}(\mathrm{n})$

Therefore the algorithm for the ANNsearch is better (asymptotically) than brute-force searching for all points and calculating their distance from the query point q.

Experimental Results on kd-Tree / RKD Forest [Silpa-Anan 2008]

ANN search using RKD-Forest

Set of 500,000 points in 128-dimensional space

Distribution of rank of NN after projection to low dimensions

100,000 random points in a 128-dim. cube are projected by a projection π into 20 dim. space. The NN p* to a query q in 128D may become n-th NN after projection onto 20D. The x-axis is the ranking n and the y-axis shows the probability that the projection $\pi\left(p^{*}\right)$ will be n-th NN to $\pi(q)$ in 20D. The graph shows a long tail.
\rightarrow Another reason why the RKD-forest works better.

Performance depends highly on distribution of input point set

Search efficiency for data of varying dimensionality

巴 Texture Synthesis

Wei \& Levoy

original

synthesized

original

synthesized

Experiments and Results Regarding Surflet-Pair Histograms

Test Objects

Point Cloud Surfaces

- Increasingly popular geometry representation
- Lots of sources of point clouds (laser scanners, Kinect et al., ...)

Bremen
 巴巴 Applications

Goal

- Surface definition that is ..
- Quick to evaluate
- Robust against noise
- Smooth
- The surface definition / representation should be well suited for:
- Ray tracing (rendering)
- Collision detection (physics)

Weighted Moving Least Squares: an Implicit Surface Definition

- Consider a point cloud P as noisy sampling of a smooth surface
- Consequence: reconstructed surface should not interpolate the points
- Define the surface as an implicit surface over a smooth distance function f, determined by the point cloud P :

$$
S=\{\mathbf{x} \mid f(\mathbf{x} ; P)=0\}
$$

where f is the distance to the yet unknown surface S

- Define f using weighted moving least squares over k nearest neighbors

- The surface is approximated locally by a plane through

$$
\mathbf{a}(\mathbf{x})=\frac{\sum_{i=1}^{k} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) \mathbf{p}_{i}}{\sum_{i=1}^{N} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right)}
$$

where θ is an appropriate weight fungtion based on "distance"

- Choose n as

$$
\min _{\mathbf{n},\|\boldsymbol{n}\|=1} \sum_{i=1}^{k}\left(\mathbf{n} \cdot\left(\mathbf{a}(\mathbf{x})-\mathbf{p}_{i}\right)\right)^{2} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right)
$$

- From PCA we know: n happens to be the smallest eigenvector of the weighted
 covariance matrix $B_{k}=(b i j) \in \mathbb{R} 3 \times 3$ with

$$
b_{i j}=\sum_{k=1}^{K} \theta\left(\left\|\mathbf{x}-\mathbf{p}_{k}\right\|\right)\left(p_{k, i}-a_{i}\right)\left(p_{k, j}-a_{j}\right)
$$

- Possible weight functions (kernels):
- Gauß kernel
- The cubic polynomial

$$
\begin{aligned}
& \theta(d)=2\left(\frac{d}{h}\right)^{3}-3\left(\frac{d}{h}\right)^{2}+1 \\
& \theta(d)=\left(1-\left|\frac{d}{h}\right|^{3}\right)^{3} \\
& \theta(d)=\left(1-\frac{d}{h}\right)^{4}\left(4 \frac{d}{h}+1\right)
\end{aligned}
$$

- The tricube function
- The Wendland function

- Whatever kernel you use, it is fine to consider only "close neighbors" around x for the computation of $\mathrm{a}(\mathrm{x})$ and $\mathrm{n}(\mathrm{x})$
\rightarrow need lots of $k-N N$ searches in P

$$
\theta\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right)
$$

- More important: what distance measure to use in
- Euclidean c

- Solution: use a topology-based distance measure
original surface
- Try to mimic the geodesic distance on the surface
- Except without knowing the surface yet
- Use a proximity graph over point cloud
- Define

$$
\begin{aligned}
d_{\mathrm{geo}}(\mathbf{x}, \mathbf{p})= & (1-a) \cdot\left(d\left(\mathbf{p}_{1}^{*}, \mathbf{p}\right)+\left\|\mathbf{p}^{0}-\mathbf{p}_{1}^{*}\right\|\right) \\
& +\quad a \cdot\left(d\left(\mathbf{p}_{2}^{*}, \mathbf{p}\right)+\left\|\mathbf{p}^{0}-\mathbf{p}_{2}^{*}\right\|\right)
\end{aligned}
$$

$$
a=\| \mathbf{p}^{0}-\mathbf{p}_{1}^{*} \mid
$$

with and

$$
d\left(\mathbf{p}_{i}^{*}, \mathbf{p}\right)
$$

$=$ length of shortest path through proximity graph

$$
\left\|\mathbf{p}^{0}-\mathbf{x}\right\|
$$

Which Proximity Graph to Use

- Many kinds of proximity graphs
- Delaunay graph
(to be explained later)
- Needs kind of a "pruning" because of "long" edges; still has problems
- Most other proximity graphs are subgraphs of the Delaunay graph
- Sphere-of-Influence graph (SIG): is not a subgraph of the DG
- Definition of the SIG:

$$
\begin{aligned}
r_{i}= & \| \mathbf{p}_{i}-\operatorname{NN}\left(\mathbf{p}_{i}\right) \mid \\
& \left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\| \leq r_{i}+r_{j}
\end{aligned}
$$

- Connect pi and pj by an edgeiff $\underset{r_{i}=}{\operatorname{iff}}\left|\mathbf{p}_{i}-k N\left(\mathbf{p}_{i}\right)\right|$
- Extension: k-SIG
- Define

Example sphere-ofinfluence graph (kSIG)

Weighted MLS surfaces using different k-SIGs for the geodesic distance

Weighted MLS surface with Euclidean distance and fixed bandwidth in kernel

WeightedM Nasstefface
with proxthenejsgraph-based distance and automatic bandwidth estimation in in k

Potential Application: Iceberg Visualization

Short digression about quaternions

[Hamilton, 1843]

- Extension of complex numbers (does not work commutatively):

$$
\mathbb{H}=\{q \mid q=w+a \cdot \mathbf{i}+b \cdot \mathbf{j}+c \cdot \mathbf{k}, w, a, b, c \in \mathbb{R}\}
$$

- Alternate notation:

$$
q=(w, \mathbf{v})
$$

- Axiome for the 3 imaginary units:

$$
\begin{gathered}
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1 \\
(\mathbf{i} \mathbf{j}) \mathbf{k}=\mathbf{i}(\mathbf{j} \mathbf{k})
\end{gathered}
$$

- From this immediately follow these laws of calculation:

$$
\mathbf{i j}=-\mathbf{j}=\mathbf{k} \quad \mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i} \quad \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}
$$

(※) Calculation rules for quaternions

- Addition:

$$
q_{1}+q_{2}=\left(w_{1}+w_{2}\right)+\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j}+\left(c_{1}+c_{2}\right) \mathbf{k}
$$

- Multiplication:

$$
\left.\left.\begin{array}{rl}
q_{1} \cdot q_{2}= & \left(w_{1}+a_{1} \mathbf{i}+b_{1} \mathbf{j}+c_{1} \mathbf{k}\right) \cdot\left(w_{2}+a_{2} \mathbf{i}+b_{2} \mathbf{j}+c_{2} \mathbf{k}\right) \\
= & \left(w_{1} w_{2}-a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}\right)+ \\
& \left(w_{1} a_{2}+w_{2} a_{1}+b_{1} c_{2}-c_{1} b_{2}\right) \mathbf{i}+ \\
& \left(\begin{array}{ll}
& \ldots
\end{array}\right) \mathbf{j}+ \\
& (\ldots
\end{array}\right) \mathbf{n}\right) \mathbf{k} .
$$

- Conjugation:

$$
q^{*}=w-\mathbf{a i}-b \mathbf{j}-c \mathbf{k}
$$

- Absolute (Norm): $|q|^{2}=w^{2}+a^{2}+b^{2}+c^{2}=q \cdot q^{*}$
- Inverse of unit quaternions: $|q|=1 \Rightarrow q^{-1}=q^{*}$
- Remark: sometimes it is convenient to represent the multiplication of two quaternions also by means of a matrix multiplication
 not Scalarmult.!
- In addition:

$$
\begin{gathered}
q_{1} \cdot q_{2}^{*}=Q_{\uparrow}^{*} q_{1}=Q_{2}^{\top} q_{1} \\
\text { Matrix to quaternion } q_{2}^{*}
\end{gathered}
$$

Embedding the 3D vektor space in \mathbb{H}

- The vector space \mathbb{R}^{3} can be embedded in \mathbb{H} like this:

$$
\mathbf{v} \in \mathbb{R}^{3} \mapsto q_{v}=(0, \mathbf{v}) \in \mathbb{H}
$$

- Definition: quaternions of the form $(0, \mathbf{v})$ are called pure quaternions

Representation of rotations using quaternions

- Let be given Axis \& Angle (φ, \mathbf{r}) withr $\|=1$
- Definie the corresponding quaternion as

$$
q=\left(\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2} \boldsymbol{r}\right)=\left(\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2} r_{x}, \sin \frac{\varphi}{2} r_{y}, \sin \frac{\varphi}{2} r_{z}\right)
$$

- Observation: $|q|=1$
- Theorem: Rotation by means of a quaternion Let $\mathbf{v} \in \mathbb{H}$ be a pure quaternion (= vector in 3 D) and $q \in \mathbb{H} \quad$ a unit quaternion. Then the figure

$$
\mathbf{v} \mapsto q \cdot \mathbf{v} \cdot q^{*}=\mathbf{v}^{\prime}
$$

describes a (right-handed) rotation of \mathbf{v} around the angle φ and axis \mathbf{r} are determined, where the pure quaternion \mathbf{v} arises.

巴 Alignment / Registration of Shapes

- See manuskript

巴 Shape Registration

- Task:
- Given two shapes (point clouds) A and B that partially overlap
- Find a registration = rigid transformation (R, t) such that the squared distance between A and B is minimized

(巴) Motivation: Registration of Point Clouds

- We know: if correct correspondences are known, then we can find a correct relative rotation/translation (alignment)

- How to find correspondences: User input? Feature detection?
- Alternative: assume that closest points correspond to each other
- Converges (provably), provided initial position is "close enough"

The Iterative Closest Point Algorithm (ICP)

```
repeat
    forall bi in B: find NN in A 
    compute optimal alignment transformation (R,t) from B to Y
    rotate/translate B
until error (E2) < threshold
```

- Optimization:
- When starting the kd-tree traversal, initialize the candidate NN with the NN as of last iteration of the ICP ("warm-starting")
- Makes the initial ball for the "ball overlaps bounds" test (hopefully) relatively small
- The traversal does not descend into subtrees far away from true NN

Variants / Optimizations

- Work only on a subsample of the points (of one or both shapes):
- Poisson disk subsampling
 as possible [Rusinkiewicz 01]
- Use other ways to establish correspondences:
- Restrict corresponding point pairs to "compatible" points (color, intensity, normals, curvature, ...) [Pulli 99]
- Weight pairs: replace the old least squares error measure by

$$
E^{\prime \prime 2}=q^{\top}\left(\sum_{i} w_{i} B_{i}^{\top} A_{i}\right) q
$$

- As weight, you could consider:
- Distance between corresponding points

$$
w_{i}=1-\frac{\left\|b_{i}-a_{i}\right\|}{\max \operatorname{dist}}
$$

- Scanner uncertainty
- Reject "bad" point pairs:
- Reject pairs whose distance is in the top $x \%$ of all distances
- Reject points at the "borders" of the shapes
- Reject pairs that are not consistent with their
 neighboring pairs [Dorai 98]:
- Two pairs $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are not consistent if

$$
\left|\left\|a_{1}-a_{2}\right\|-\left\|b_{1}-b_{2}\right\|\right|>\theta
$$

Experiments with Various Rejection Rates, and Different p-Norms

Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly: "Sparse Iterative Closest Point". Symposium on Geometry Processing 2013

巴 From the Siggraph 2019

巴 Stackless kd-tree traversal for ray-tracing

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. Nvidia GeForce 8800GTX, CUDA, 2007.

Interactive K-D Tree GPU Raytracing

All images rendered at 640x480

Daniel Reiter Horn Jeremy Sugerman
Mike Houston Pat Hanrahan
Stanford University

Daniel Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan ATI X1900XTX, PixelShader 3.0, 2007

Real-Time KD-Tree Construction on Graphics Hardware

Real-Time KD-Tree Construction on Graphics Hardware

Kun Zhou, Qiming Hou, Rui Wang, Baining Guo; SIGGRAPH Asia 2008

巴U BSP Demo

Constructive Solid Geometry (CSG) using BSP's

http://evanw.github.io/csg.js/

巴U) Shadow Volume Checking with BSPs

Q	Quit
1	Load 1st scene (simple room, 1 light source)
2	Load 2nd scene (random objects 1)
3	Load 3rd scene (simple room, 4 light sources)
4	Load 4th scene (cubes, 1 light source)
5	Load 5th scene (random objects 2)
W, A, S, D Translate viewpoint	
Cursor keys Rotate viewpoint	
$+/-$	Pan up/down
R	Reset current scene and rebuild BSP tree
L	Toggle labels
T	Toggle usage of BSP tree
U	Toggle depth buffer
E	Toggle shadows

[^1]Kinetic Data Structures Motivation: BSP Tree with Moving Planes

(巴) Kinetic Data Structures - Motivation

General Concept of Kinetic Data Structures (KDS)

- Given:
- A number of objects (points, lines, polygons, boxes, ...)
- A flight path for each of these objects, given by an algebraic function
- In practice, we assume linear motion

- Attribute $=$ the task $/$ purpose of a KDS
- Examples: bbox of a set of points, kd-tree over a set of points, convex hull, ...

- Combinatorial structure $=$ "everything that describes the attribute except concrete coordinates"
- Examples:
- Convex hull: those points that form the vertices (corners) of the convex hull
- Bbox: those points that realize the min/max on at least one of the coord axes
- Kd-tree: all the nodes \& pointers that make up the tree, and pointers to points

Conptar
SS July 2023

Example of Change of Combinatorial Changes

More Definitions for KDS

- Certificate $=$ simple geometric relation (a.k.a. geometric predicate) involving a few of the objects
- Example: $\mathbf{p} \cdot \mathbf{n}<0$, where \mathbf{p} is an input point and \mathbf{n} is a normal (stored somewhere in the KDS)
- E.g.: the plane equations of the faces of the convex hull of a set of points
- Event: a specific point in the future where one of the certificates fails, i.e., its truth value is false, due to the motion of the objects
- External event = event where the combinatorial structure of the attribute changes
- In case of convex hull: one of the points leaves the current convex hull, i.e., "crosses" over a plane
- Internal event = event where the combinatorial structure remains the same, but the set of certificates changes
- Convex hull: are there any internal events?
- Kinetic data structure (KDS) for a geometric attribute $=$

1. A set of certificates that is true whenever the combinatorial structure of the attribute is valid; as well as
2. A set of rules (algorithm) for repairing the attribute and the set of certificates in case of an event

Generic Main Loop to Maintain a KDS

```
initialize the attribute for the input objects
initialize the set of certificates
compute all events (failure times) of all certificates
    (usually only up to some time in the future)
initialize the p-queue for all events, sorted by failure time
loop forever:
    do computations using the KDS ...
    update time tnew := told + \Deltat
    while timestamp(front event in queue) <= tnew:
    pop front event from the event queue
    if external event:
        change the attribute
    update the set of certificates:
        some failure times of later events might change
        some certificates may need to be deleted
        maybe, some new certificates need to be created
```

In a graphical system, the main loop might look like this ...

```
initialization ...
while simulation runs:
    determine time t of next rendering
    get foremost event from the event queue
    while timestamp(event) < t:
        update KDS
        get next event from the event queue
    use the attribute of the KDS (e.g., bbox, kd-tree, BVH, ...)
    render scene
```


Performance Measures for KDS

1. Responsiveness:

A KDS is responsive, if the cost to update the set of certificates and the attribute in case of an event is "small"

- Usually, "small" $=\mathrm{O}\left(\log ^{s} n\right)$ or $\mathrm{O}\left(n^{\varepsilon}\right)$

2. Efficiency:

A KDS is efficient, if the ratio of \#(total events) / \#(external events) is small

- I.e., the \#(internal events), where the attribute's combinatorial structure does not change, is small
- I.e., the \#events is comparable to the \#(attribute changes) over time

3. Compactness:

A KDS is compact, if the number of certificates is close to linear in the number of input objects
4. Locality:

A KDS is local, if all objects participate only in a small number of certificates

- Advantage: if an object changes its flight path, then the cost for updating all events affected by it is not too high
- Maintain the topmost among points moving along the y-axis
- Is a building block for the kinetic bbox
- Look at the ty-plane (flight paths)

- We are interested in the upper envelope:

- Theorem (w/o proof) [sharir, Hart, Agarwal and others]:

Given n flight paths. If any pair of flight paths intersects at most s times, then the complexity of computing the upper envelope is in $O(n \log n)$

- Problem: change of flight path \rightarrow recomputation of the envelope
- Takes O($n \log n$) time
- Can we update the envelope / topmost point faster?
- Solution: the tournament tree = kinetic heap
- Leaves = points
- Inner nodes = topmost of its two children
- Event queue $=$ p-queue $=$ regular heap

- For all inner nodes, maintain certificate: "left child point is above right child point"
- Event = left/right points swap order along y axis
- Processing an event:
- Replace pt stored in node with the "winner" and delete/add two events in the event queue
- Which ones?
- Potentially propagate new point up through tree
- Takes $O\left(\log ^{2} n\right)$ time \rightarrow responsive

- \# certificates = \# inner nodes $=O(n) \rightarrow$ compact
- Each point participates in $O(\log n)$ events \rightarrow local
- A problem with deformable objects: BVH becomes invalid

Classic BVH update:

- Brute-force, bottom-up, i.e., for every query / anim. step
- O(n•\#steps), where $n=$ \#pgons

Kinetic BVH update:

- Event-based (do work only, if something essential changed)
- $O(n \log n) \rightarrow$ independent of query/ sim. frequency!

SS July 2023

Extension: the Kinetic Separation List

- Definition: A separation list stores pairs of BVs in two BVHs, resp., which are non-overlapping and which have parents that do overlap (i.e., those pairs of BVs where the simultaneous traversal of the BVHs during collision detection stopped)

Separation-List
\qquad

Results

Shirt Scene (~ 100,000 triangles)

Problems of KDS

- Number of events can kill performance
- Computing event times is expensive
- KDS as a whole can become very complex, housekeeping becomes too expensive and bug-prone (e.g., kinetic BSP in 3D)
- KDS needs to be updated throughout time, even if we don't need it for a long duration in-between queries

Sketch of a Possible Approach by Way of an Example

- Definition: directional width Let $S=$ set of moving points. Define the width in direction u at time t as $\omega(S(t), \mathbf{u})$.

- Definition: ε-kernel Let $Q \subseteq S$. Q is called an ε-kernel of S iff

$$
\forall t: \omega(S(t), \mathbf{u}) \leq(1+\varepsilon) \omega(Q(t), \mathbf{u})
$$

- Theorem (w/o proof) [Agarwal, Har-Peled, Varadarajan]:

For n points moving with fixed velocity in 2D, and any $\varepsilon>0$, one can compute an ε-kernel of size $O\left(\frac{1}{\varepsilon^{\frac{3}{2}}}\right)$ in time $O\left(n+\frac{1}{\varepsilon^{3}}\right)$.

Results for BBox Maintained by Eps-Approximate KDS

10,000 moving points
Error < 0.02 for kernel of size 32

Exact Algorithm

Approximation Algorithm

巴®) Kinetic Quadtree Demo

Different Types of Bounding Volumes

Cylinder
[Weghorst et al., 1985]

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

- Some ideas for several Master's theses

Oriented Ellipsoids

- Research questions:
- Fast intersection of two BVs for collision detection?
- Compute is cheap, memory transfer is expensive $\rightarrow \mathrm{BV}$ compression?
- Exact / approximate (biased) intersection tests?
- Fast intersection test for rays against such BVs?
- Efficient BVH construction? (for fast queries at runtime)

BVH with k-DOPs

(巴) BVH with AABBs

Wrapped vs Layered BVH

Layered BVH:
a BV must bound its child BVs

Directed Hausdorff distance

- Def:
maximum distance of a set, P , to the nearest point in the other set, Q .

$$
h(P, Q)=\max _{p \in P} \min _{q \in Q} d(p, q)
$$

- Example:
- $h(P, Q)=d\left(p_{2}, q_{2}\right)$
- $h(Q, P)=d\left(p_{3}, q_{4}\right)$
- Property: Not symmetric

q_{2}
(⿺辶) Examples

Bidirectional Hausdorff Distance

$$
H(P, Q)=\max \{h(P, Q), h(Q, P)\}
$$

Digression: Bounding Volumes can Also be Used as Inner BVs

巴 The Collision Detection Pipeline

巴ひ Hierarchical Collision Detection using BVHs
traverse (X, Y)
if X, Y do not overlap then
return
if X, Y are leaves then check polygons
else
for all children pairs do traverse(Xi, Yj)

巴 Applications using Distance Fields

Demos of Convex Hull Algorithms in 2D

※巴 Demos of Convex Hull Algorithms in 2D

https://github.com/gregorybchris/chans

- One step of the incremental Clarkson-Shor algorithm:

Clarkson-Shor-Algorithm (randomized incremental)

Michael Horn - http://www.eecs.tufts.edu/~mhorn01/comp163/

Different algorithms, e.g., gift wrapping

Tim Lambert - http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

Applications of the Convex Hull

- Biology:
- How much area does an animal occupy/need? \rightarrow take the convex hull of all the points where it has been observed

Day 1

- Spatial extent of an outbreak in animal epidemics \rightarrow convex hull of locations of all infected animals
- In physics engines:

- Use the convex hull of objects as bounding volumes in broad phase
- Calculate distance between $\mathrm{CH}^{\prime} \mathrm{s}$, or a separating plane
- Robot path planning:
- Put convex hull around complex obstacle
- Shortest path from S to T is either a straight line, or includes a part of the $C H$

Onion Peeling

- Ordering points by degree of "outsidedness":
- Construct sequence of convex hulls (onion peeling)
- Can be used to
- Estimate source of an event; points are sensors with readings above a threshold
- Outlier detection and removal
- Finding the diameter of a set S of points:

- Diameter = distance of farthest pair p, q
- p, q must be on the convex hull
- Walk around CH using a pair of antipodal points
- Diameter can be used for clustering: minimize the maximal diameter over all clusters

Extremely Fast Collision Detection for Convex Objects

- A condition for "non-collision":
P and Q are "linearly separable" $: \Leftrightarrow$
\exists half-space $H: P \subseteq H \wedge Q \subseteq H^{c}$
(i.e., "P is completely on one side of H, Q completely on the other side")

Separating plane H

- Preprocessing: for each coll.obj., compute its convex hull
- Runtime: try to find a separating plane quickly

The "Separating Planes" Algorithm for Convex Coll.Det.

- The idea: utilize temporal coherence \rightarrow if E_{t} was a separating plane between P and Q at time t, then the new separating plane E_{t+1} is probably not very "far" from E_{t} (perhaps it is even the same)
- Check candidate plane by steepest decent
 on the convex hull (from vertex to vertex)
(\mathbf{p}, \mathbf{n}) is separating plane \Leftrightarrow
$\forall \mathbf{v} \in P: f(\mathbf{v})=(\mathbf{v}-\mathbf{p}) \cdot \mathbf{n}>0$
- For details: see Advanced Comp. Graphics

Visualization

Decomposition into convex surface patches

Convex pieces at a medium level of the hierarchy
(green = orig. surface, red = free surface, yellow = "contained")

- One of the first mentions are in René Descarte's (Cartesius') Principiorum Philosophiae, 1644:
- Imagined that the universe is filled with matter that is attracted to the stars and swirls around them
- Georgy F. Voronoi (Георгий Ф. Вороной, 1868-1908)
- Born Ukraine (part of Russian empire at the time)
- Professor in Warsaw
- Student: Delaunay

Descartes' Vortices

Delaunay (1890 - 1980)

- Student of Voronoi (and Grave)
- One of the 3 best Russian mountaineers around 1930
- Russian spelling: Борис Николаевич Делоне
- At that time, French (and German) was the language of science!

- Not to be confused with the painter Robert Delaunay!
- 1885 - 1941 ; really French

Champs de Mars. La Tour rouge. 1911

Homage à Bleriot, 1914

Independent Discoveries in Other Fields

Descartes	Astronomy	1644	"Heavens" (= Voronoi regions)
Dirichlet	Math	1850	Dirichlet tesselation
Voronoi	Math	1908	Voronoi diagram
Boldyrev	Geology	1909	Area of influence polygons
Thiessen	Meteorology	1911	Thiessen polygons
Niggli	Crystallography	1927	Domains of action
Wigner \& Seitz	Physics	1933	Wigner-Seitz regions
Frank \& Casper	Physics	1958	Atom domains
Brown	Ecology	1965	Areas potentially available
Mead	Ecology	1966	Plant polygons
Hoofd et al.	Anatomy	1985	Capillary domains

Application: Maximal Empty Circles Constrained by a Polygon

Task: find location of maximal circle such that

1. its center is inside polygon A
2. it does not contain any of the points

The "Cones Trick" to Generate Approximate 2D Voronoi Diagrams

- Observation:
- Place a cone at every Voronoi site in the plane with 90° angle at the apex
- Distance of a point X from Voronoi site $=$ height of cone below X
- Method:
- For each site, render a cone with different color (= site ID)
- Borders in color buffer = Voronoi edges
- Value in Z-buffer = distance from site
- This technique was already mentioned by Dirichlet \& Voronoi

Top view

Demo

Hint at natural coordinates. Mention Mean Value Coordinates (which are better)
http://alexbeutel.com/webgl/voronoi.html

Complexity in Higher Dimensions

- The Voronoi diagram over n points in d-dim. space comprises, in each dimension $j, 0 \leq j \leq d-1$, a number, f_{j}, of j-dimensional facets. Those numbers are in the order of

$$
\forall j: f_{j} \in O\left(n^{\left[\frac{d}{2}\right]}\right)
$$

Generalizations of the Voronoi Diagram

- Other distance functions
- Other objects as sites/generators
- Higher dimensions
- Other equivalence classes
...

Voronoi Diagrams with Weights

- Generalize the distance function between point \mathbf{x} and site \mathbf{p}_{i}
- Additive weights:

$$
d\left(\mathbf{x}, \mathbf{p}_{i}\right)=\left\|\mathbf{x}-\mathbf{p}_{i}\right\|-r_{i}
$$

- Bisectors are hyperbolic arcs (and lines)
- A.k.a. Appolonius diagram
- Example
- Multiplicative weights:

$$
d\left(\mathbf{x}, \mathbf{p}_{i}\right)=\frac{1}{w_{i}}\left\|\mathbf{x}-\mathbf{p}_{i}\right\|
$$

- Bisectors are circular arcs (and straight lines)

The Power Diagram

- Different distance function:

$$
d\left(\mathbf{x}, \mathbf{p}_{i}\right)=\left(\mathbf{x}-\mathbf{p}_{i}\right)^{2}-r_{i}
$$

- Here, bisectors are lines!
- Example:

Other Distance Metrics

- Voronoi diagram using L_{1} and L_{∞} norm:

L_{∞} - norm (maximum-norm)

Convex norm (can be defined over any convex polygon!)

Voronoi Diagrams on Other Two-Manifolds (e.g. Sphere)

- On the sphere, bisectors are great circles

Higher-Order Voronoi Diagrams

- Definition: In a Voronoi diagram of k-th order, $\mathrm{V}_{k}(S)$, all points in space belong to the same Voronoi region that have the same set of k nearest neighbors in S.
- Differences to the classical Voronoi diagram:
- A "bisector" can contribute to several, different Voronoi edges!
- A Voronoi region no longer necessarily contains its generators (Voronoi sites)

Examples

https://www.fernuni-hagen.de/ks/forschung/geom_lab.shtml
※(U) Voronoi Diagrams over Line Segments

- Sites (generators) are now points and line segments
- Bisectors = lines and parabolas
- Example:

Example with Weighted Sites and Higher-Order Sites

The "Cones Trick" for Higher-Order Sites

- Observation: the surface in 3D, generated by

$$
f(x, y)=(x, y, d(x, y))
$$

where $d(x, y)=$ distance from the Voronoi site is a swept cone, where the apex is swept over all points of the generator

- Idea: approximate distance function by a mesh

More Example Swept Cones (Distance Meshes)

The Outer Voronoi Regions over a Convex Polyhedron

(a)

(b)

The external
Voronoi regions of ...
(a) faces
(b) all features
(c) a single edge
(d) vertices
(c)

Application Areas for Voronoi Diagrams

- Anthropology and Archeology -- Identify the parts of a region under the influence of different Neolithic clans, chiefdoms, ceremonial centers, or hill forts.
- Astronomy -- Identify clusters of stars and clusters of galaxies (Here we saw what may be the earliest picture of a Voronoi diagram, drawn by Descartes in 1644, where the regions described the regions of gravitational influence of the sun and other stars.)
- Biology, Ecology, Forestry -- Model and analyze plant competition ("Area potentially available to a tree", "Plant polygons")
- Cartography -- Piece together satellite photographs into large "mosaic" maps
- Crystallography and Chemistry -- Study chemical properties of metallic sodium ("Wigner-Seitz regions"); Modelling alloy structures as sphere packings ("Domain of an atom")
- Finite Element Analysis -- Generating finite element meshes which avoid small angles
- Geography -- Analyzing patterns of urban settlements
- Geology -- Estimation of ore reserves in a deposit using information obtained from bore holes; modelling crack patterns in basalt due to contraction on cooling
- Geometric Modeling -- Finding "good" triangulations of 3D surfaces
- Marketing -- Model market of US metropolitan areas; market area extending down to individual retail stores
- Mathematics -- Study of positive definite quadratic forms ("Dirichlet tessellation", "Voronoi diagram")
- Metallurgy -- Modelling "grain growth" in metal films
- Meteorology -- Estimate regional rainfall averages, given data at discrete rain gauges ("Thiessen polygons")
- Pattern Recognition -- Find simple descriptors for shapes that extract 1D characterizations from 2D shapes ("Medial axis" or "skeleton" of a contour)
- Physiology -- Analysis of capillary distribution in crosssections of muscle tissue to compute oxygen transport ("Capillary domains")
- Robotics -- Path planning in the presence of obstacles
- Statistics and Data Analysis -- Analyze statistical clustering ("Natural neighbors" interpolation)
- Zoology -- Model and analyze the territories of animals

巴 Application: Fracturing (e.g., in Games)

Path Planning

- Given: a floor plan as set of line segments
- Sought: path (e.g. for autonomous vehicle = robot) with maximum distance to walls
- Solution:
- Construct (generalized) Voronoi diagram
- Find Voronoi nodes closest to the start and end point, resp.
- Use Dijkstra's algorithm to find shortest

http://www.cs.columbia.edu/~pblaer/projects/path_planner/ path from start to end nodes through Voronoi diagram

④ Example

Assessing the Quality of Samplings

- Example: weather stations
- Question: where is the lowest density?
- Ideal sampling \rightarrow each point would cover an area of

$$
\bar{A}=\frac{A}{n}
$$

where $A=$ total area

- Usually, there are constraints, e.g., accessibility

- Solution:
- Calculate Voronoi and Delaunay diagrams
- Relative size per cell is

$$
A_{i}=\frac{V_{i}}{\bar{A}}
$$

- $A_{i}>1 \rightarrow$ density too low
- "Penalize" sample points if they are close together relative to the size of the cell \rightarrow
 distance to nearest neighbor

Metrology: Determining the "Sphere-ness" of a Shape

- Application: manufacturing balls for bearings
- High-precision/high-performance bearings require perfectly spherical balls
- How to determine "sphere-ness"?
- Procedure:

- Measure coordinates of points on surface
- Compute smallest annulus containing points S ("smallest" = smallest width)
- Definition annulus:
region between two concentric spheres (circles)

- Cases that can occur in 2D(!):

1. Couter touches 3 points, $C_{\text {inner }}$ touches 1 point
2. Couter touches 1 points, $C_{i n n e r}$ touches 3 point

3. Couter touches 2 points, $C_{\text {inner }}$ touches 2 points

- Remember: centers of both spheres are "connected"
- In all cases, read "x points or more"

- In 3D, there are more cases

- Observation: once the center cof the annulus is found, the radii follow from S
- Case 2: c is closest point to 3 points of $S \rightarrow$ c sits on a node of the Voronoi diagram of S
- Case 1: c is farthest point to 3 points of $S \rightarrow$ c sits on a node of farthest-point Voronoi diagram of S
- Case 3: \mathbf{c} is closest to 2 points of S and farthest to 2 points of $S \rightarrow$ c sits on an edge of VD and on an edge of farthest VD of S

The Farthest-Point Voronoi Diagram

- Just like the VD over n points, except ...
- Voronoi region of a point $p \in S=$ intersection of $n-1$ half-spaces where we take the "other" side of the bisectors!
- Thus,

$$
R(p)=\left\{x \in \mathbb{R}^{d} \mid d(x, p)=\max _{q \in S} d(x, q)\right\}
$$

- Some properties are similar, some different:
- Farthest-point Voronoi regions are convex
- Nodes of the farthest-point VD are farthest away from 3 Voronoi sites/generators (i.e., they have the same and maximal distance from 3 Voronoi sites)
- Some points $p \in S$ don't have a Voronoi region!

Solution Method to the Problem of Finding the Smallest Annulus

- Compute $\operatorname{VD}(S)$, the Voronoi nodes are the candidates of center \mathbf{c} of $C_{\text {inner }}$, find farthest point of S w.r.t. each $\mathbf{c} \rightarrow$ smallest annulus for case 2
- Compute farthest-point $\operatorname{VD}(S)$, the Voronoi nodes are the candidates of center \mathbf{c} of $C_{\text {outer }}$, find closest point of S w.r.t. each $\mathbf{c} \longrightarrow$ smallest annulus for case 1
- Overlay VD(S) and farthest-point VD(S), compute intersection points of all pairs of edges, each is a candidate \mathbf{c} for case 3
\rightarrow pick smallest annulus
- Runtime: $O\left(n+n+n^{2}\right)$

(巴) Protein Structure Analysis

- Question:
- What does the active surface (= interface) of a molecule look like? how big is it?
- Which atoms could interact with atoms from the environment?
- One solution:
- Randomly place atoms around the given molecule
- Calculate the Voronoi diagram of all points
- Interface = Voronoi facets between molecule and surrounding atoms

Improvements

- Use power diagram or Voronoi diagram with additive weights
- Weight = atomic radius
- Calculate "depth" per atom:
- Atoms with a Voronoi facet outward = depth 1
- Traverse Delaunay graph breadth-first from outside to inside
- The deeper an atom, the smaller its contribution to interactions

Secondary Structure of Proteins

- Long proteins fold into helices, tangles, and surface pieces
- Results in interactions between atoms (bonds) that are not seen in the chemical formula
- Question: given the positions of the atoms, what does the secondary structure look like?
- Which atoms are "adjacent", which are not
- How strong is their adjacency?
- Solution: Voronoi diagram

- Adjacent = common Voronoi facet
- Strength of the neighborhood = size of the facet
- Result: Adjacency-Matrix (gray/black = weakly/strongly neighboured)

(※̈) Appolonius Diagrams in 3D

Helps to determine the empty spaces in a molecule

- The River-Mile-Coordinate system:
- Popularly used in large waterway systems
- Coordinates of a point in the plane $=(l, q)$ where
$l=$ measured along a rivers center line,
$q=$ distance from point $(1,0)$ perpendicular to the tangent in $(1,0)$
- Property: coords reflect how much time it takes to get there along the river
- Task:
given a point $(x, y) \rightarrow$ which coordinate does (l, q) have?

Decomposition of the center line into a
finely resolved polygon course

Voronoi diagram for this

Redistricting (Partitioning a Country into Electoral Districts)

- The fairness principle says: "one man, one vote"
- Simple ... or is it?
- A simple example:

\mathbf{R}	\mathbf{R}	\mathbf{R}	\mathbf{R}
\mathbf{R}	\mathbf{R}	\mathbf{D}	\mathbf{D}
\mathbf{D}	\mathbf{D}	\mathbf{D}	\mathbf{D}

Distribution of voters

$\rightarrow 2 \times R, 2 \times D$
representatives

$\rightarrow 1 \times R, 3 \times D$
representatives

$\rightarrow 3 \times \mathrm{R}, 1 \times \mathrm{D}$
representatives

- Bylaws for redistricting in the US:
- Same number of voters per district
- Each district must be contiguous
- Districts should be "compact" (but not precisely defined)

Bad Example

"In gerrymandered election districts, the voters don't choose their politicians - the politicians choose their voters!"

- A possible, precise definition of district compactness: Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{k}\right\}$ electoral districts. Each district contains a number of voters with locations p_{i}, i.e., $D_{i}=\left\{p_{j}, \ldots, p_{l}\right\} \subset P=\left\{p_{1}, \ldots, p_{n}\right\}$
Define the compactness of a district as

$$
c(D)=\sum_{k, l=i}^{j} d\left(p_{k}, p_{l}\right)
$$

The total compactness of the redistricting is then

$$
c(\mathcal{D})=\sum_{i=1}^{k} c\left(D_{i}\right)
$$

- Theorem (w/o proof):

An optimal partitioning of the country into districts (wrt. the compactness measure just defined) can be derived from the power diagram.

- Redistricting task:
- For a given set of voters $\left\{p_{i}\right\}$, construct a set of Voronoi generators and appropriate weights such that $\forall i:\left|D_{i}\right|=n$
- The Voronoi sites can be the polling stations
- Weights $=$ measure for the population density in the districts (small weight = large density)
- Approach:
- Start with random sites and weights
- Iteratively move the sites and change the weights until $C(D)$ reaches the min

Similar Effect in the European Elections

- Votes of people from Malta or Luxembourg have about 10x more weight than those of German voters!

Visibility Sorting Using Voronoi Diagrams

- Reminder: BSPs for Visibility Sorting
- Method:
- Define a visibility relation on Voronoi regions

$$
R_{1} \prec_{v} R_{2}
$$

each point of Voronoi cell R2 is hidden by a point of cell R1 with respect to viewpoint v

- Now applies:

$$
R_{1} \prec_{v} R_{2} \Leftrightarrow \forall p_{1} \in R_{1} \forall p_{2} \in R_{2}:\left\|v-p_{1}\right\|<\| v-p_{2} \mid
$$

- Proof: clear because R1 and R2 are completely on different sides of the bisector between R1 and R2.
- Idea:
- First cluster all polygons into Voronoi cells.
- At runtime, sort only the Voronoi sites (incrementally).
- Approach to Voronoi clustering:
- Initialize: one cell per polygon with centroid as site.
- Delete the smallest cell:
- Recalculate Voronoi diagram locally
- Assign polygons to the smallest neighboring cell
- Abort if no cell can be resolved without creating a cyclic visibility order in a cell

巳 Voronoi Diagrams in Nature

Soap bubbles between two glass plates

Honey comb (centroidal Voronoi tessellation)

Wings of dragonfly

(e) Voronoi Diagrams in Interactive Art

> Бınqs.fom ‘ouәeyd ‘əqq!us \#oos

巴 Demo of Delaunay Triangulation in 2D

https://github.com/mapbox/delaunator

- Delaunay tetrahedron
- Bisectors = planes
- Edge flip \rightarrow becomes:
- Replace 2 tetrahedra by 3 (replace triangle by edge); or
- Replace 3 tetrahedra by 2

- Slivers in 3D Delaunay triangulations (tetrahedralizations):

- Sad truth: the max-min-angle property holds only in 2D! :

巴 Example for $N N G(S) \subseteq D(S)$

巴 Distance Fields

- Distance fields are C^{0}-continuous everywhere
- Distance fields are C^{1}-continuous except at boundaries of Voronoi regions

Distance field is C^{0} continuous

C^{1} continuous except at Voronoi boundaries

- Adaptively Sampled Distance Fields (ADFs): sample at low rates where the distance field is smooth; sample at higher rates only where necessary (e.g., near corners)

Boundary-limited quadtree

Detail-directed ADF

- Rendering ADF's using adaptive ray-casting:

Rendered via adaptively ray casting

Rays cast to render part of the image on the left

- Point-based rendering of ADF's:
- Seed each boundary leaf cell with randomly placed points, number of points proportional to cell size
- Relax the points onto the ADF surface using the distance field and gradient
- Optionally shade each point using the field's gradient

Original points seeded in boundary leaf cells

Points after relaxation onto the surface

A Continuum of Geometric Data Structures ...

Quadtree

K-d tree

BSP tree

BV hierarchy

Convex
hull

Voronoi

Occlusion culling, ray casting, hierarchical coll. detection.

Meshing,
terrain visualization, iso-surface generation, Ray casting, distance fields.

Nearest- Boolean neighbor search, operations, texture synthesis, shape matching, ray tracing. operations, (Shadows),

Range tree
Range queries

[^0]: SS July 2023

[^1]: http://bastian.rieck.ru/uni/bsp/

